Publications
Volumetric measurement of transonic cavity flow using stereoscopic particle image velcimetry
DeMauro, Edward P.; Beresh, Steven J.; Wagner, Justin W.; Henfling, John F.; Spillers, Russell W.
Stereoscopic particle image velocimetry was used to experimentally measure the recirculating flow within finite-span cavities of varying complex geometry at a freestream Mach number of 0.8. Volumetric measurements were made to investigate the side wall influences by scanning a laser sheet across the cavity. Each of the geometries could be classied as an open-cavity, based on L/D. The addition of ramps altered the recirculation zone within the cavity, causing it to move along the streamwise direction. Within the simple rectangular cavity, a system of counter-rotating streamwise vortices formed due to spillage from along the side wall, which caused the mixing layer to develop a steady spanwise waviness. The ramped complex geometry, due to the presence of leading edge and side ramps, appeared to suppress the formation of streamwise vorticity associated with side wall spillage, resulting in a much more two-dimensional mixing layer.