Publications
Vented and sealed cookoff of powdered and pressed ε-CL-20
Hobbs, Michael L.; Kaneshige, Michael J.; Coronel, Stephanie C.
We have completed a series of vented and sealed cookoff experiments of the ε-polymorph of CL-20 in our Sandia Instrumented Thermal Ignition (SITI) apparatus using both powder and pressed pellets at nominal densities of 313 ± 8 kg/m3 and 1030 ± 4 kg/m3, respectively. The boundary temperature of our aluminum confinement cylinder was ramped in 10 minutes from room temperature to a prescribed set-point temperature ranging between 448 nd 468 K and held at the set-point temperature until ignition. A universal cookoff model (UCM) has been calibrated using the ε-CL-20 SITI data to predict pressurization and thermal ignition of ε-CL-20. The ignition model was validated by using one-dimensional time-to-explosion (ODTX) ignition data from a different laboratory. We found that a thirtyfold increase in the reaction rates due to liquefaction at 520 K could explain the high temperature ODTX cookoff data. The model gives a plausible explanation of why melting is important in fast cookoff events involving CL-20. Our model also gives support to 520 K as the liquefaction point of CL-20, which has different values in the literature.