Publications
Van der Waals forces and confinement in carbon nanopores: Interaction between CH4, COOH, NH3, OH, SH and single-walled carbon nanotubes
Weck, Philippe F.; Kim, Eunja; Wang, Yifeng
Interactions between CH4, COOH, NH3, OH, SH and armchair (n,n) (n=4,7,14) and zigzag (n,0) (n=7,12,25) single-walled carbon nanotubes (SWCNTs) have been systematically investigated within the framework of dispersion-corrected density functional theory (DFT-D2). Endohedral and exohedral molecular adsorption on SWCNT walls is energetically unfavorable or weak, despite the use of C6/r6 pairwise London-dispersion corrections. The effects of pore size and chirality on the molecule/SWCNTs interaction were also assessed. Chemisorption of COOH, NH3, OH and SH at SWCNT edge sites was examined using a H-capped (7,0) SWCNT fragment and its impact on electrophilic, nucleophilic and radical attacks was predicted by means of Fukui functions.