Publications
Van der Waals and capillary adhesion of microelectromechanical systems
Delrio, Frank W.; De Boer, Maarten P.; Phinney, Leslie M.; Bourdon, Christopher B.; Dunn, Martin L.
Interfacial adhesion is an important factor in determining the performance and reliability of microelectromechanical systems (MEMS). Van der Waals dispersion forces are the dominant adhesion mechanism in the low relative humidity (RH) regime. At small roughness values, adhesion is mainly due to van der Waals dispersion forces acting across extensive non-contacting areas and is related to 1/Dave2, where Dave is the average surface separation. These contributions must be considered due to the close proximity of the surfaces, which is a result of the planar deposition technology. At large roughness values, van der Waals forces at contacting asperities become the dominating contributor to the adhesion. Capillary condensation of water has a significant effect on rough surface adhesion in the moderate to high RH regime. Above a threshold RH, which is a function of the surface roughness, the adhesion jumps due to meniscus formation at the interface and increases rapidly towards the upper limit of Γ=2γcosθ=44 mJ/m2, where γis the liquid surface energy and θis the contact angle. Copyright © 2006 by ASME.