Publications
Using multivariate analyses to compare subsets of electrodes and potentials within an electrode array for predicting sugar concentrations in mixed solutions
Steen, William A.; Stork, Chris L.
A non-selective electrode array is presented for the quantification of fructose, galactose, and glucose in mixed solutions. A unique feature of this electrode array relative to other published work is the wide diversity of electrode materials incorporated within the array, being constructed of 41 different metals and metal alloys. Cyclic voltammograms were acquired for solutions containing a single sugar at varying concentrations, and the correlation between current and sugar concentration was calculated as a function of potential and electrode array element. The correlation plots identified potential regions and electrodes that scaled most linearly with sugar concentration, and the number of electrodes used in building predictive models was reduced to 15. Partial least squares regression models relating electrochemical response to sugar concentration were constructed using data from single electrodes and multiple electrodes within the array, and the predictive abilities of these models were rigorously compared using a non-parametric Wilcoxon test. Models using single electrodes (Pt:Rh (90:10) for fructose, Au:Ni (82:18) for galactose, and Au for glucose) were judged to be statistically superior or indistinguishable from those built with multiple electrodes. Additionally, for each sugar, interval partial least squares regression successfully identified a subset of potentials within a given electrode that generated a model of statistically equivalent predictive ability relative to the full potential model. While including data from multiple electrodes offered no benefit in predicting sugar concentration, use of the array afforded the versatility and flexibility of selecting the best single electrode for each sugar. © 2008 Elsevier B.V. All rights reserved.