Publications

Publications / Conference Poster

Use of topology optimization to design shock and vibration test fixtures

Schoenherr, Tyler F.; Coffin, Peter C.; Clark, Brett W.

Engineering designers are responsible for designing parts, components, and systems that perform required functions in their intended field environment. To determine if their design will meet its requirements, the engineer must run a qualification test. For shock and vibration environments, the component or unit under test is connected to a shaker table or shock apparatus and is imparted with a load to simulate the mechanical stress from vibration. A difficulty in this approach is when the stresses in the unit under test cannot be generated by a fixed base boundary condition. A fixed base boundary condition is the approximate boundary condition when the unit under test is affixed to a stiff test fixture and shaker table. To aid in correcting for this error, a flexible fixture needs to be designed to account for the stresses that the unit under test will experience in the field. This paper will use topology optimization to design a test fixture that will minimize the difference between the mechanical impedance of the next level of assembly and the test fixture. The optimized fixture will be compared to the rigid fixture with respect to the test’s ability to produce the field stresses.