Publications
Unsupervised learning methods to perform material identification tasks on spectral computed tomography data
Gallegos, Isabel O.; Koundinyan, Srivathsan P.; Suknot, April S.; Jimenez, Edward S.; Thompson, Kyle R.; Goodner, Ryan N.
Sandia National Laboratories has developed a method that applies machine learning methods to high-energy spectral X-ray computed tomography data to identify material composition for every reconstructed voxel in the field-of-view. While initial experiments led by Koundinyan et al. demonstrated that supervised machine learning techniques perform well in identifying a variety of classes of materials, this work presents an unsupervised approach that differentiates isolated materials with highly similar properties, and can be applied on spectral computed tomography data to identify materials more accurately compared to traditional performance. Additionally, if regions of the spectrum for multiple voxels become unusable due to artifacts, this method can still reliably perform material identification. This enhanced capability can tremendously impact fields in security, industry, and medicine that leverage non-destructive evaluation for detection, verification, and validation applications.