Publications
Understanding the TiH(2-x)/TiOy System at Elevated Temperature: A Literature Review
Beste, Ariana B.; Bufford, Daniel C.
Titanium hydride of varying TiH stoichiometry is used in pyrotechnic compositions. In order to yield consistent performance, manufacturing processes must be developed to ensure precise and reproducible material properties, including composition and morphology. Legacy synthesis protocols are not comprehensive nor are the required apparatuses still available. To guide the development of novel production procedures, this report reviews literature on relevant chemical reactions and diffusion events occurring at elevated temperature in the TiH(2-x)/TiOy system. Titanium hydride exposed to air spontaneously forms a passivating oxide layer. Upon heating, significant hydrogen release, which is accompanied by changes to the surface oxide layer, is noted by 375–400°C. At higher temperatures (above about 500°C) the oxide layer is reported to be essentially nonexistent as a result of oxide-layer dissolution processes and, potentially, oxide-layer reduction due to water formation. Based on the reviewed literature, we hypothesize that, by 500°C, the surface layer consists of an oxyhydride phase, which is a solid solution of oxygen in titanium hydride. We believe that hydrogen release from titanium hydride is controlled by the kinetics of molecular hydrogen desorption on the oxyhydride surface. No literature data is available for corresponding activation energies of the dynamic desorption process, and the equilibrium phase diagram of this three-component system remains largely unexplored as well. These gaps in knowledge might be addressed through coordinated computational modeling and experimental efforts.