Publications
Uncertainty quantification's role in modeling and simulation planning, and credibility assessment through the predictive capability maturity model
Rider, William J.; Witkowski, Walter R.; Mousseau, Vincent A.
The importance of credible, trustworthy numerical simulations is obvious especially when using the results for making high-consequence decisions. Determining the credibility of such numerical predictions is much more difficult and requires a systematic approach to assessing predictive capability, associated uncertainties and overall confidence in the computational simulation process for the intended use of the model. This process begins with an evaluation of the computational modeling of the identified, important physics of the simulation for its intended use. This is commonly done through a Phenomena Identification Ranking Table (PIRT). Then an assessment of the evidence basis supporting the ability to computationally simulate these physics can be performed using various frameworks such as the Predictive Capability Maturity Model (PCMM). Several critical activities follow in the areas of code and solution verification, validation and uncertainty quantification, which will be described in detail in the following sections. The subject matter is introduced for general applications but specifics are given for the failure prediction project. The first task that must be completed in the verification & validation procedure is to perform a credibility assessment to fully understand the requirements and limitations of the current computational simulation capability for the specific application intended use. The PIRT and PCMM are tools used at Sandia National Laboratories (SNL) to provide a consistent manner to perform such an assessment. Ideally, all stakeholders should be represented and contribute to perform an accurate credibility assessment. PIRTs and PCMMs are both described in brief detail below and the resulting assessments for an example project are given.