Publications Details
Uncertainty quantification framework for wind turbine wake measurements with a scanning lidar
Herges, Thomas H.; Maniaci, David C.; Naughton, Brian T.
Sandia National Laboratories and the National Renewable Energy Laboratory conducted a field campaign at the Scaled Wind Farm Technology (SWiFT) Facility using a customized scanning lidar from the Technical University of Denmark. The results from this field campaign were used to assess the predictive capability of computational models to capture wake dissipation and wake trajectory downstream of a wind turbine. The present work used large-eddy simulations of the wind turbine wake and a virtual SpinnerLidar to quantify the uncertainty of wind turbine wake position due to the line-of-sight sampling and probe volume averaging effects of the lidar. The LES simulations were of the SWiFT wind turbine at both a 0° and 30° yaw offset with a stable inflow. The wake position extracted from the simulated lidar sampling had an uncertainty of 2.8 m and m as compared to the wake position extracted from the full velocity field with 0° and 30° yaw offset, respectively. The larger uncertainty in calculated wake position of the 30° yaw offset case was due to the increased angle of the wake position relative to the axial flow direction and the resulting decrease in the line-of-sight velocity relative the axial velocity.