Publications

Publications / Journal Article

Ultrafast laser-collision-induced fluorescence in atmospheric pressure plasma

Barnat, Edward V.; Fierro, A.

The implementation and demonstration of laser-collision-induced fluorescence (LCIF) generated in atmospheric pressure helium environments is presented in this communication. As collision times are observed to be fast (∼10 ns), ultrashort pulse laser excitation (<100 fs) of the 23S to 33P (388.9 nm) is utilized to initiate the LCIF process. Both neutral-induced and electron-induced components of the LCIF are observed in the helium afterglow plasma as the reduced electric field (E/N) is tuned from <0.1 Td to over 5 Td. Under the discharge conditions presented in this study (640 Torr He), the lower limit of electron density detection is ∼1012 e cm-3. The spatial profiles of the 23S helium metastable and electrons are presented as functions of E/N to demonstrate the spatial resolving capabilities of the LCIF method.