Publications
Two-dimensional modeling of nickel electrodeposition in LIGA microfabrication
Chen, Ken S.; Evans, Gregory H.
Two-dimensional processes of nickel electro-deposition in LIGA microfabrication were modeled using the finite-element method and a fully coupled implicit solution scheme via Newton's technique. Species concentrations, electrolyte potential, flow field, and positions of the moving deposition surfaces were computed by solving the species-mass, charge, and momentum conservation equations as well as pseudo-solid mesh-motion equations that employ an arbitrary Lagrangian-Eulerian (ALE) formulation. Coupling this ALE approach with repeated re-meshing and re-mapping makes it possible to track the entire transient deposition processes from start of deposition until the trenches are filled, thus enabling the computation of local current densities that influence the microstructure and functional/mechanical properties of the deposit.