Publications
Top-down vs. bottom-up uncertainty quantification for validation of a mechanical joint model
Hasselman, Timothy; Wathugala, G.W.; Urbina, Angel; Paez, Thomas L.
Mechanical systems behave randomly and it is desirable to capture this feature when making response predictions. Currently, there is an effort to develop predictive mathematical models and test their validity through the assessment of their predictive accuracy relative to experimental results. Traditionally, the approach to quantify modeling uncertainty is to examine the uncertainty associated with each of the critical model parameters and to propagate this through the model to obtain an estimate of uncertainty in model predictions. This approach is referred to as the "bottom-up" approach. However, parametric uncertainty does not account for all sources of the differences between model predictions and experimental observations, such as model form uncertainty and experimental uncertainty due to the variability of test conditions, measurements and data processing. Uncertainty quantification (UQ) based directly on the differences between model predictions and experimental data is referred to as the "top-down" approach. This paper discusses both the top-down and bottom-up approaches and uses the respective stochastic models to assess the validity of a joint model with respect to experimental data not used to calibrate the model, i.e. random vibration versus sine test data. Practical examples based on joint modeling and testing performed by Sandia are presented and conclusions are drawn as to the pros and cons of each approach.