Publications
Three-dimensional kinetic modeling of streamer propagation in a nitrogen/helium gas mixture
Fierro, Andrew S.; Moore, Chris; Yee, Ben; Hopkins, Matthew M.
A fully resolved kinetic model (particle-in-cell and direct simulation Monte Carlo for particle/photon collisions) of a near atmospheric pressure ionization wave is presented here. Fully resolving the required numerical spatial (sub-μm) and temporal scales (tens of fs) for atmospheric pressure discharges in three-dimensions is still a challenging task on modern super computers. To keep the overall problem tractable, the total number of elements are reduced by only simulating a 10° wedge rather than a full 360° geometry. The ionization wave is generated in a needle-plane configuration with a gap size of 250 μm and a background of nitrogen and helium gas. A voltage of 1500 V is applied to the anode and an initial electron and ion density of 109 cm-3 is seeded in a region near the anode electrode tip and extending towards the cathode. As these initial electrons are swept away, photoionization and photoemission create new electrons and allow the ionization front to propagate towards the cathode. Results from the 90% N2, 10% He discharge indicate that photoionization has minimal impact on plasma formation processes and cathode photoemission is the dominant mechanism for new electrons. In the 90% He, 10% N2 discharge case, however, photoionization likely has an impact as the observed locations of photoionization occur far enough away from the ionization front to allow for sufficient avalanche processes that contribute to the propagation of the ionization wave. Additionally, the electron energy distribution functions in the 90% He, 10% N2 case indicate that there is less energy loss to the low lying molecular N2 electronic states as well as the vibrational and rotational modes. This leads to higher electron energies and faster plasma development times of ∼0.4 ns for the 90% He, 10% N2 case, and ∼1.5 ns for the 90% N2, 10% He case. In addition to analysis of the ionization wave results, the overall challenges associated with simulations near atmospheric pressure discharges in three-dimensions are discussed, including the limitations of the 10° wedge that produces, at least qualitatively, minimal 3D effects.