Publications
Thin Film Models of Magnesium Orthovanadate Catalysts for Oxidative Dehydrogenation
Sault, Allen G.; Mudd, Jason E.; Ruffner, Judith A.; Rodriguez, Marko A.; Tissot, Ralph G.
Magnesium vanadates are potentially important catalytic materials for the conversion of alkanes to alkenes via oxidative dehydrogenation. However, little is known about the active sites at which the catalytic reactions take place. It may be possible to obtain a significant increase in the catalytic efficiency if the effects of certain material properties on the surface reactions could be quantified and optimized through the use of appropriate preparation techniques. Given that surface reactivity is often dependent upon surface structure and that the atomic level structure of the active sites in these catalysts is virtually unknown, we desire thin film samples consisting of a single magnesium vanadate phase and a well defined crystallographic orientation in order to reduce complexity and simplify the study of active sites. This report describes the use of reactive RF sputter deposition to fabricate very highly oriented, stoichiometric Mg{sub 3}(VO{sub 4}){sub 2} thin films, and subsequent studies of the reactivity of these films under reaction conditions typically found during oxidative dehydrogenation. We demonstrate that the synthesis methods employed do in fact result in stoichiometric films with the desired crystallographic orientation, and that the chemical behavior of the films closely approximates that of bulk, high surface area Mg{sub 3}(VO{sub 4}){sub 2} powders. We further use these films to demonstrate the effects of oxygen vacancies on chemical behavior, demonstrate that surface composition can vary significantly under reaction conditions, and obtain the first evidence for structure sensitivity in Mg{sub 3}(VO{sub 4}){sub 2} catalysts.