Publications

Publications / Journal Article

Thermodynamics of technetium: reconciling theory and experiment using density functional perturbation analysis

Weck, Philippe F.; Kim, Eunja

The structure, lattice dynamics and thermodynamic properties of bulk technetium were investigated within the framework of density functional theory. The phonon density of states spectrum computed with density functional perturbation theory closely matches inelastic coherent neutron scattering measurements. The thermal properties of technetium were derived from phonon frequencies calculated within the quasi-harmonic approximation (QHA), which introduces a volume dependence of phonon frequencies as a part of the anharmonic effect. The predicted thermal expansion and isobaric heat capacity of technetium are in excellent agreement with available experimental data for temperatures up to ∼1600 K.