Publications
Thermal transport in tantalum oxide films for memristive applications
Landon, Colin D.; Wilke, Rudeger H.T.; Brumbach, Michael T.; Brennecka, Geoffrey L.; Blea-Kirby, Mia A.; Ihlefeld, Jon I.; Marinella, Matthew J.; Beechem, Thomas E.
The thermal conductivity of amorphous TaOx memristive films having variable oxygen content is measured using time domain thermoreflectance. Thermal transport is described by a two-part model where the electrical contribution is quantified via the Wiedemann-Franz relation and the vibrational contribution by the minimum thermal conductivity limit for amorphous solids. The vibrational contribution remains constant near 0.9 W/mK regardless of oxygen concentration, while the electrical contribution varies from 0 to 3.3 W/mK. Thus, the dominant thermal carrier in TaOx switches between vibrations and charge carriers and is controllable either by oxygen content during deposition, or dynamically by field-induced charge state migration.