Publications
Thermal stability of oxide-based solar selective coatings for CSP central receivers
Ambrosini, Andrea A.; Lambert, Timothy N.; Boubault, Antoine; Hunt, Andrew; Davis, Danae J.; Adams, David P.; Hall, Aaron C.
Efforts at Sandia National Laboratories are addressing more efficient solar selective coatings for tower applications, based on oxide materials deposited by a variety of methods. Over the course of this investigation, several compositions with optical properties competitive to Pyromark have been identified. These promising coatings were deposited on Inconel 625 and Haynes 230 Ni alloys and isothermally aged in air at temperatures between 600-800 °C for up to 480 hours, concurrently with Pyromark®, which was used as a reference standard. At various heating times, the samples were removed from the furnace and their optical properties (solar-weighted absorptance and emittance) were measured. In addition, x-ray diffraction and scanning electron microscopy were utilized to investigate any structural or morphological changes that occurred over time with heating, in an attempt to correlate with changes in optical properties. At 600 and 700 °C, several of the coatings maintained an absorptivity > 90%. While the chemical makeup of the coating material greatly influences its optical properties, the morphology of the surface also plays in important part. A thermal sprayed coating modified using a novel laser treatment showed improved properties versus the untreated coating, on par with Pyromark™ at 600 °C, with little degradation after 480 hours. The results of aging on the optical, structural, and morphological properties of these novel coatings will be discussed.