Publications

Publications / Journal Article

Thermal stability of electrodes in Lithium-ion cells

Roth, Emanuel P.; Nagasubramanian, Ganesan N.

Differential scanning calorimetry (DSC) analysis was used to identify thermal reactions in Sony-type lithium-ion cells and to correlate these reactions with interactions of cell constituents and reaction products. An electrochemical half-cell was used to cycle the anode and cathode materials and to set the state-of-charge (SOC). Three temperature regions of interaction were identified and associated with the SOC (degree of Li intercalation) of the cell. Anodes were shown to undergo exothermic reactions as low as 80 C involving decomposition of the solid electrolyte interphase (SEI) layer. The LiPF{sub 6} salt in the electrolyte (EC:PC:DEC/1M LiPF{sub 6}) was seen to play an essential role in this reaction. DSC analysis of the anodes from disassembled Sony cells showed similar behavior to the half-cell anodes with a strong exotherm beginning in the 80 C--90 C range. Exothermic reactions were also observed in the 200 C--300 C region between the intercalated lithium anodes, the LiPF{sub 6} salt, and the PVDF binder. These reactions were followed by a high-temperature reaction region, 300 C--400 C, also involving the PVDF binder and the intercalated lithium anodes. Cathode exothermic reactions with the PVDF binder were observed above 200 C and increased with the SOC (decreasing Li content in the cathode). No thermal reactions were seen at lower temperatures suggesting that thermal runaway reactions in this type of cell are initiated at the anode. An Accelerating Rate Calorimeter (ARC) was used to perform measurements of thermal runaway on commercial Sony Li-ion cells as a function of SOC. The cells showed sustained thermal output as low as 80 C in agreement with the DSC observations of anode materials but the heating rate was strongly dependent on the SOC.