Publications
Thermal shock resistance of multilayer silicon carbide receiver tubes for 800oC molten salt concentrating solar power application
Armijo, Kenneth M.; Walker, Matthew W.; Christian, Joshua M.; Madden, Dimitri A.; Stavig, Mark E.; Oliverio, Steven; Feinroth, Herbert
CSP power tower receiver systems during rapid transient weather periods can be vulnerable to thermal shock conditions from rain that which can facilitate the onset of leaks and failures that can have catastrophic consequences. Silicon carbide (SiC) materials have attractive receiver application characteristics for being light weight, having high-strength and excellent thermal shock resistance performance which make them a particularly good fit for receiver absorber materials in CSP. In this investigation, the performance characteristics of Ceramic Tubular Products (CTP) SiC ceramic matrix composite (CMC), multilayered tubes were explored with respect to thermal shock performance for solar receiver applications in next generation CSP plants. Here, thermal shock testing was performed at the Sandia National Laboratories (SNL) Solar Furnace facility using a dynamic stage and thermal shock tube test setup. The tubes tested under incident solar heat flux of 100 W/cm2 were heated with inner tube temperatures reaching approximately 800 °C, with outer temperatures exceeding or just reaching 1000 ℃ for the multilayer and monolithic SiC tubes respectively. The tubes were then quenched with simulated rain. The tubes were then cooled and subjected to hoop stress analysis using an Instron device to assess their subsequent mechanical strength. The on-sun study experimental results indicate an average of 24.2% and 97% higher hoop strength for the CMC tubes than those composed of monolithic SiC and aluminum oxide (Al2O3) respectively.