Publications

Publications / Journal Article

Thermal conductivity in nanocrystalline-SiC/C superlattices

Habermehl, Scott D.; Serrano, Justin R.

The formation of thin film superlattices consisting of alternating layers of nitrogen-doped SiC (SiC:N) and C is reported. Periodically terminating the SiC:N surface with a graphitic C boundary layer and controlling the SiC:N/C thickness ratio yield nanocrystalline SiC grains ranging in size from 365 to 23 nm. Frequency domain thermo-reflectance is employed to determine the thermal conductivity, which is found to vary from 35.5 W m-1 K-1 for monolithic undoped α-SiC films to 1.6 W m-1 K-1 for a SiC:N/C superlattice with a 47 nm period and a SiC:N/C thickness ratio of 11. A series conductance model is employed to explain the dependence of the thermal conductivity on the superlattice structure. The results indicate that the thermal conductivity is more dependent on the SiC:N/C thickness ratio than the SiC:N grain size, indicative of strong boundary layer phonon scattering.