Publications
Thermal atom-ion collisions in a K- Yb+ hybrid system
Hoang, Thai M.; Schwindt, Peter D.D.; Jau, Yuan-Yu J.
We present experimental studies of atom-ion collisions using buffer-gas cooled, trapped ytterbium (Yb+) ions immersed in potassium (K) vapor. The range of the collisional temperature is on the order of several hundred kelvin (thermal regime). We have determined various collisional rate coefficients of the Yb+ ion per K-atom number density. We find the upper bounds of charge-exchange rate coefficients κce to be (12.7±1.6)×10-14cm3s-1 for K-Yb+171 and (5.3±0.7)×10-14cm3s-1 for K-Yb+172. For both isotopes, the spin-destruction rate coefficient κsd has an upper bound at (1.46±0.77)×10-9cm3s-1. The spin-exchange rate coefficient κse is measured to be (1.64±0.51)×10-9cm3s-1. The relatively low charge-exchange rate reported here demonstrates the advantage of using K atoms to sympathetically cool Yb+ ions and the relatively high spin-exchange rate may benefit research work in quantum metrology and quantum information processing on an atom-ion platform using K atoms and Yb+ ions.