Publications

Publications / SAND Report

The Water, Energy, and Carbon Dioxide Sequestration Simulation Model (WECSsim). A user's manual

Kobos, Peter H.; Roach, Jesse D.; Klise, Geoffrey T.; Heath, Jason; Dewers, Thomas D.; Malczynski, Leonard A.; Borns, David J.

The Water, Energy, and Carbon Sequestration Simulation Model (WECSsim) is a national dynamic simulation model that calculates and assesses capturing, transporting, and storing CO2 in deep saline formations from all coal and natural gas-fired power plants in the U.S. An overarching capability of WECSsim is to also account for simultaneous CO2 injection and water extraction within the same geological saline formation. Extracting, treating, and using these saline waters to cool the power plant is one way to develop more value from using saline formations as CO2 storage locations. WECSsim allows for both one-to-one comparisons of a single power plant to a single saline formation along with the ability to develop a national CO2 storage supply curve and related national assessments for these formations. This report summarizes the scope, structure, and methodology of WECSsim along with a few key results. Developing WECSsim from a small scoping study to the full national-scale modeling effort took approximately 5 years. This report represents the culmination of that effort. The key findings from the WECSsim model indicate the U.S. has several decades' worth of storage for CO2 in saline formations when managed appropriately. Competition for subsurface storage capacity, intrastate flows of CO2 and water, and a supportive regulatory environment all play a key role as to the performance and cost profile across the range from a single power plant to all coal and natural gas-based plants' ability to store CO2. The overall system's cost to capture, transport, and store CO2 for the national assessment range from $74 to $208 / tonne stored ($96 to 272 / tonne avoided) for the first 25 to 50% of the 1126 power plants to between $1,585 to well beyond $2,000 / tonne stored ($2,040 to well beyond $2,000 / tonne avoided) for the remaining 75 to 100% of the plants. The latter range, while extremely large, includes all natural gas power plants in the U.S., many of which have an extremely low capacity factor and therefore relatively high system's cost to capture and store CO2.