Publications
The role of adhesion and fracture on the performance of nanostructured films
Nanostructured materials are the basis for emerging technologies, such as MEMS, NEMS, sensors, and flexible electronics, that will dominate near term advances in nanotechnology. These technologies are often based on devices containing layers of nanoscale polymer, ceramic and metallic films and stretchable interconnects creating surfaces and interfaces with properties and responses that differ dramatically from bulk counterparts. The differing properties can induce high interlaminar stresses that lead to wrinkling, delamination, and buckling in compression [1,2], and film fracture and decohesion in tension. [3] However, the relationships between composition, structure and properties, and especially adhesion and fracture, are not well-defined at the nanoscale. These relationships are critical to assuring performance and reliability of nanostructured materials and devices. They are also critical for building materials science based predictive models of structure and behavior.