Publications
The need for credibility guidance for analyses quantifying margin and uncertainty
Schroeder, Benjamin B.; Hund, Lauren H.; Kittinger, Robert
Current quantification of margin and uncertainty (QMU) guidance lacks a consistent framework for communicating the credibility of analysis results. Recent efforts at providing QMU guidance have pushed for broadening the analyses supporting QMU results beyond extrapolative statistical models to include a more holistic picture of risk, including information garnered from both experimental campaigns and computational simulations. Credibility guidance would assist in the consideration of belief-based aspects of an analysis. Such guidance exists for presenting computational simulation-based analyses and is under development for the integration of experimental data into computational simulations (calibration or validation), but is absent for the ultimate QMU product resulting from experimental or computational analyses. A QMU credibility assessment framework comprised of five elements is proposed: requirement definitions and quantity of interest selection, data quality, model uncertainty, calibration/parameter estimation, and validation. Through considering and reporting on these elements during a QMU analysis, the decision-maker will receive a more complete description of the analysis and be better positioned to understand the risks involved with using the analysis to support a decision. A molten salt battery application is used to demonstrate the proposed QMU credibility framework.