Publications
The influence of surface impurities on photoelectric currents driven by intense soft x rays
In an x-ray driven cavity experiment, an intense flux of soft x rays on the emitting surface produces significant emission of photoelectrons having several kiloelectronvolts of kinetic energy. At the same time, rapid heating of the emitting surface occurs, resulting in the release of adsorbed surface impurities and subsequent formation of an impurity plasma. This numerical study explores a simple model for the photoelectric currents and the impurity plasma. Attention is given to the effect of varying the composition of the impurity plasma. The presence of protons or hydrogen molecular ions leads to a substantially enhanced cavity current, while heavier plasma ions are seen to have a limited effect on the cavity current due to their lower mobility. Additionally, it is demonstrated that an additional peak in the current waveform can appear due to the impurity plasma. A correlation between the impurity plasma composition and the timing of this peak is elucidated.