Publications

Publications / Journal Article

The effect of chain stiffness and salt on the elastic response of a polyelectrolyte

Stevens, Mark J.; Berezney, John P.; Saleh, Omar A.

We present simulations of the force-extension curves of strong polyelectrolytes with varying intrinsic stiffness as well as specifically treating hyaluronic acid, a polyelectrolyte of intermediate stiffness. Whereas fully flexible polyelectrolytes show a high-force regime where extension increases nearly logarithmically with force, we find that the addition of even a small amount of stiffness alters the short-range structure and removes this logarithmic elastic regime. This further confirms that the logarithmic regime is a consequence of the short-ranged "wrinkles" in the flexible chain. As the stiffness increases, the force-extension curves tend toward and reach the wormlike chain behavior. Using the screened Coulomb potential and a simple bead-spring model, the simulations are able to reproduce the hyaluronic acid experimental force-extension curves for salt concentrations ranging from 1 to 500 mM. Furthermore, the simulation data can be scaled to a universal curve like the experimental data. The scaling analysis is consistent with the interpretation that, in the low-salt limit, the hyaluronic acid chain stiffness scales with salt with an exponent of -0.7, rather than either of the two main theoretical predictions of -0.5 and -1. Furthermore, given the conditions of the simulation, we conclude that this exponent value is not due to counterion condensation effects, as had previously been suggested.