Publications
Testing Machine Learned Fault Detection and Classification on a DC Microgrid
Ojetola, Samuel; Reno, Matthew J.; Flicker, Jack D.; Bauer, Daniel; Stoltzfuz, David
Interest in the application of DC Microgrids to distribution systems have been spurred by the continued rise of renewable energy resources and the dependence on DC loads. However, in comparison to AC systems, the lack of natural zero crossing in DC Microgrids makes the interruption of fault currents with fuses and circuit breakers more difficult. DC faults can cause severe damage to voltage-source converters within few milliseconds, hence, the need to quickly detect and isolate the fault. In this paper, the potential for five different Machine Learning (ML) classifiers to identify fault type and fault resistance in a DC Microgrid is explored. The ML algorithms are trained using simulated fault data recorded from a 750 VDC Microgrid modeled in PSCAD/EMTDC. The performance of the trained algorithms are tested using real fault data gathered from an operational DC Microgrid located on the Kirtland Air Force Base. Of the five ML algorithms, three could detect the fault and determine the fault type with at least 99% accuracy, and only one could estimate the fault resistance with at least 99% accuracy. By performing a self-learning monitoring and decision making analysis, protection relays equipped with ML algorithms can quickly detect and isolate faults to improve the protection operations on DC Microgrids.