Publications
Temporal anomaly detection in social media
Skryzalin, Jacek S.; Field, Richard V.; Fisher, Andrew N.; Bauer, Travis L.
In this work, we approach topic tracking and meme trending in social media with a temporal focus; rather than analyzing topics, we aim to identify time periods whose content differs significantly from normal. We detail two approaches. The first is an information-theoretic analysis of the distributions of terms emitted during each time period. In the second, we cluster the documents from each time period and analyze the tightness of each clustering. We also discuss a method of combining the scores created by each technique, and we provide ample empirical analysis of our methodology on various Twitter datasets.