Publications
Temperature distributions and gradients in laser-heated plasmas relevant to magnetized liner inertial fusion
Carpenter, K.R.; Mancini, R.C.; Harding, Eric H.; Harvey-Thompson, Adam J.; Geissel, Matthias G.; Weis, M.R.; Hansen, Stephanie B.; Peterson, Kyle J.; Rochau, G.A.
We present two-dimensional temperature measurements of magnetized and unmagnetized plasma experiments performed at Z relevant to the preheat stage in magnetized liner inertial fusion. The deuterium gas fill was doped with a trace amount of argon for spectroscopy purposes, and time-integrated spatially resolved spectra and narrow-band images were collected in both experiments. The spectrum and image data were included in two separate multiobjective analysis methods to extract the electron temperature spatial distribution Te(r,z). The results indicate that the magnetic field increases Te, the axial extent of the laser heating, and the magnitude of the radial temperature gradients. Comparisons with simulations reveal that the simulations overpredict the extent of the laser heating and underpredict the temperature. Temperature gradient scale lengths extracted from the measurements also permit an assessment of the importance of nonlocal heat transport.