Publications
System theoretic frameworks for mitigating risk complexity in the international transportation of spent nuclear fuel
Williams, Adam D.; Osborn, Douglas M.; Kalinina, Elena A.
In response to the expansion of nuclear fuel cycle (NFC) activities (and the associated suite of risks) around the world, this effort provides an evaluation of systems-based solutions for managing such risk complexity in multi-modal (land and water), and multi-jurisdictional international spent nuclear fuel (SNF) transportation. By better understanding systemic risks in SNF transportation, developing SNF transportation risk assessment frameworks, and evaluating these systems-based risk assessment frameworks, this research illustrates interdependency between safety, security, and safeguards (3S) risks is inherent in NFC activities that can go unidentified when each āSā is independently evaluated. Two novel system-theoretic analysis techniques, dynamic probabilistic risk assessment (DPRA) and system-theoretic process analysis (STPA), provide integrated 3S analysis to address these interdependencies. This research suggests a need (and provides a way) to reprioritize United States engagement efforts to reduce global SNF transportation risks. Note: This paper is a summary of the final results found in Reference [1].