Publications
Synthesis, structure, and molecular modeling of a titanoniobate isopolyanion
Nyman, M.; Nyman, M.; Criscenti, Louise C.; Bonhomme, F.; Rodriguez, Marko A.; Cygan, Randall T.
Polyoxoniobate chemistry, both in the solid state and in solution is dominated by [Nb{sub 6}O{sub 19}]{sup 8-}, the Lindquist ion. Recently, we have expanded this chemistry through use of hydrothermal synthesis. The current publication illustrates how use of heteroatoms is another means of diversifying polyoxoniobate chemistry. Here we report the synthesis of Na{sub 8}[Nb{sub 8}Ti{sub 2}O{sub 28}] {center_dot} 34H{sub 2}O [{bar 1}] and its structural characterization from single-crystal X-ray data. This salt crystallizes in the P-1 space group (a = 11.829(4) {angstrom}, b = 12.205(4) {angstrom}, c = 12.532(4) {angstrom}, {alpha} = 97.666(5){sup o}, {beta} = 113.840(4){sup o}, {gamma} = 110.809(4){sup o}), and the decameric anionic cluster [Nb{sub 8}Ti{sub 2}O{sub 28}]{sup 8-} has the same cluster geometry as the previously reported [Nb{sub 10}O{sub 28}]{sup 6-} and [V{sub 10}O{sub 28}]{sup 6-}. Molecular modeling studies of [Nb{sub 10}O{sub 28}]{sup 6-} and all possible isomers of [Nb{sub 8}Ti{sub 2}O{sub 28}]{sup 8-} suggest that this cluster geometry is stabilized by incorporating the Ti{sup 4+} into cluster positions in which edge-sharing is maximized. In this manner, the overall repulsion between edge-sharing octahedra within the cluster is minimized, as Ti{sup 4+} is both slightly smaller and of lower charge than Nb{sup 5+}. Synthetic studies also show that while the [Nb{sub 10}O{sub 28}]{sup 6-} cluster is difficult to obtain, the [Nb{sub 8}Ti{sub 2}O{sub 28}]{sup 8-} cluster can be synthesized reproducibly and is stable in neutral to basic solutions, as well.