Publications
Synchrotron X-ray topography characterization of high quality ammonothermal-grown gallium nitride substrates
Liu, Yafei; Raghothamachar, Balaji; Peng, Hongyu; Ailihumaer, Tuerxun; Dudley, Michael; Collazo, Ramon; Tweedie, James; Sitar, Zlatko; Shadi Shahedipour-Sandvik, F.; Jones, Kenneth A.; Armstrong, Andrew A.; Allerman, A.A.; Grabianska, Karolina; Kucharski, Robert; Bockowski, Michal
Ammonothermal growth of bulk gallium nitride (GaN) crystals is considered the most suitable method to meet the demand for high quality bulk substrates for power electronics. A non-destructive evaluation of defect content in state-of-the-art ammonothermal substrates has been carried out by synchrotron X-ray topography. Using a monochromatic beam in grazing incidence geometry, high resolution X-ray topographs reveal the various dislocation types present. Ray-tracing simulations that were modified to take both surface relaxation and absorption effects into account allowed improved correlation with observed dislocation contrast so that the Burgers vectors of the dislocations could be determined. The images show the very high quality of the ammonothermal GaN substrate wafers which contain low densities of threading dislocations (TDs) but are free of basal plane dislocations (BPDs). Threading mixed dislocations (TMDs) were found to be dominant among the TDs, and the overall TD density (TDD) of a 1-inch wafer was found to be as low as 5.16 × 103 cm−2.