Publications

Publications / Journal Article

Supramolecular Energy Transfer in Self-Assembled Biomimetic Polymer Nanocomposites Based upon Green Bacterial Antenna Complexes

Timlin, Jerilyn A.; Anthony, Stephen M.; Collins, Aaron M.; Montano, Gabriel A.

Photosynthetic organisms use complex and regulated multichromophore assemblies, called lightharvesting (LH) antennas, to capture, concentrate and direct solar radiation to reaction centers that then carry out concomitant chemistry. Nature’s LH antennas are remarkable, operating with high efficiency in fluctuating environmental and photic conditions as well as being assembled with nanoscale precision thus, they often serve as inspiration in material design. The presented work was inspired by a natural LH antenna. We show that a diblock copolymer amphiphile enables the generation and integration of optically dense chromophore arrays, within a biomimetic polymer membrane. The entire construct is solution-processable, scalable and exhibits intra and inter-supramolecular energy transfer in a completely noncovalent design. This work demonstrates the potential of polymer membrane materials in generating spatial-energetic landscapes for photonic applications.