Publications
Structure of the (1014) Surfaces of Calcite, Dolomite, and Magnesite under Wet and Dry Conditions
Cygan, Randall T.; Cygan, Randall T.
Atomistic computer simulation methods have been employed to model the structure of the (10{bar 1}4) surfaces of calcite, dolomite and magnesite. The authors calculations show that under vacuum conditions, calcite undergoes the greatest degree of surface relaxation with rotation and distortion of the carbonate group accompanied by movement of the calcium ion. The magnesite surface is the least distorted of the three carbonates, with dolomite being intermediate to the two end members. When water molecules are placed on the surface to produce complete monolayer coverage, the calcite surface is stabilized and the amount of relaxation is substantially reduced. In contrast, the dolomite and magnesite surfaces are destabilized by hydration as indicated by a significant increase in the surface energies relative to the dry surface.