Publications
Stabilized Hyperfoam Modeling of the General Plastics EF4003 (3 PCF) Flexible Foam
Long, Kevin N.; Hamel, Craig H.
Constitutive model parameterizations for the General Plastics EF4003 low density 3 pound per cubic foot are needed for design and qualification purposes in normal and abnormal mechanical simulations. The material is expected to be deformed in two ways: first during preloading, and second under impact conditions of the system (transient dynamic). All analyses are to be performed at room temperature. The goal is to provide the analysis community a robust constitutive model parameterization to represent the compression behavior of the EF4003 foam from small deformations up to massive compressive deformations when the foam is densifying. It is worth noting the EF4003 exhibits anisotropy in its stress-strain behavior between the rise and transverse directions (See figure 2.8c-d) as well as plateau behavior that is very likely to cause material stability issues, due to the buckling transition, (and has historically done so) when using Sandia’s current workhorse models for flexible foams, Hyperfoam and Flex Foam. A Stability-informed Hyperfoam parameterization procedure is developed and executed to calibrate a hyperfoam model for the EF4003 room temperature, transversely loaded data. A rise orientation parameterization was not attempted due to localization in the experiments.