Publications

Publications / Conference Poster

Sparse approximations of directed information graphs

Quinn, Christopher J.; Pinar, Ali P.; Gao, Jing; Su, Lu

Given a network of agents interacting over time, which few interactions best characterize the dynamics of the whole network? We propose an algorithm that finds the optimal sparse approximation of a network. The user controls the level of sparsity by specifying the total number of edges. The networks are represented using directed information graphs, a graphical model that depicts causal influences between agents in a network. Goodness of approximation is measured with Kullback-Leibler divergence. The algorithm finds the best approximation with no assumptions on the topology or the class of the joint distribution.