Publications
Solid propellant scaling analysis using simultaneous holography and imaging pyrometry
Marsh, Andrew W.; Zheng, Andy X.; Mazumdar, Yi C.; Heyborne, Jeffery D.; Guildenbecher, Daniel R.
Aluminum particle combustion is a critical component in solid propellant operation. Understanding these processes is essential for improving specific impulse and other performance metrics. Prior studies of aluminum particle combustion in the literature have focused on spatial and temperature statistics for a single propellant strand size, which is typically significantly smaller than the full grain size used in aerospace and defense applications. In this work, we aim to determine the effect of increasing propellant strand size on several key properties of aluminum particle combustion at atmospheric pressure. To accomplish this, we use simultaneous high speed holography and imaging pyrometry to obtain temporally resolved spatial and temperature information. Here, we discuss how agglomerate size, velocity, and temperature statistics vary as a function of propellant strand size from 6 mm up to 19 mm in diameter. By understanding how the statistics scale as a function of strand size, we can determine how to extrapolate lab-scale experimental data to full-scale propellant burns.