Publications

Publications / Journal Article

Solar PV Inverter Reactive Power Disaggregation and Control Setting Estimation

Talkington, Samuel; Grijalva, Santiago; Reno, Matthew J.; Azzolini, Joseph A.

The wide variety of inverter control settings for solar photovoltaics (PV) causes the accurate knowledge of these settings to be difficult to obtain in practice. This paper addresses the problem of determining inverter reactive power control settings from net load advanced metering infrastructure (AMI) data. The estimation is first cast as fitting parameterized control curves. We argue for an intuitive and practical approach to preprocess the AMI data, which exposes the setting to be extracted. We then develop a more general approach with a data-driven reactive power disaggregation algorithm, reframing the problem as a maximum likelihood estimation for the native load reactive power. These methods form the first approach for reconstructing reactive power control settings of solar PV inverters from net load data. The constrained curve fitting algorithm is tested on 701 loads with behind-the-meter (BTM) PV systems with identical control settings. The settings are accurately reconstructed with mean absolute percentage errors between 0.425% and 2.870%. The disaggregation-based approach is then tested on 451 loads with variable BTM PV control settings. Different configurations of this algorithm reconstruct the PV inverter reactive power timeseries with root mean squared errors between 0.173 and 0.198 kVAR.