Publications

Publications / Conference Poster

Sodium fire analysis using a sodium chemistry package in MELCOR

Aoyagi, Mitsuhiro; Uchibori, Akihiro; Takata, Takahi; Louie, David L.; Clark, Andrew C.

The Sodium Chemistry (NAC) package in MELCOR has been developed to enhance application to sodium cooled fast reactors. The models in the NAC package have been assessed through benchmark analyses. The F7-1 pool fire experimental analysis is conducted within the framework of the U.S.-Japan collaboration; Civil Nuclear Energy Research and Development Working Group. This study assesses the capability of the pool fire model in MELCOR and provides recommendations for future model improvements because the physics of sodium pool fire are complex. Based on the preliminary results, analytical conditions, such as heat transfer on the floor catch pan are modified. The current MELCOR analysis yields lower values than the experimental data in pool combustion rate and pool, catch pan, and gas temperature during early time. The current treatment of heat transfer for the catch pan is the primary cause of the difference in the results from the experimental data. After sodium discharge stopping, the pool combustion rate and temperature become higher than experimental data. This is caused by absence of a model for pool fire suppression due to the oxide layer buildup on the pool surface. Based on these results, recommendations for future works are needed, such as heat transfer modification in terms of the catch pan and consideration of the effects of the oxide layer for both the MELCOR input model and pool physic.