Publications

Publications / Journal Article

Single hole spin relaxation probed by fast single-shot latched charge sensing

Bogan, Alex; Studenikin, Sergei; Korkusinski, Marek; Gaudreau, Louis; Zawadzki, Piotr; Sachrajda, Andy; Tracy, Lisa A.; Reno, J.L.; Hargett, Terry H.

Hole spins have recently emerged as attractive candidates for solid-state qubits for quantum computing. Their state can be manipulated electrically by taking advantage of the strong spin-orbit interaction (SOI). Crucially, these systems promise longer spin coherence lifetimes owing to their weak interactions with nuclear spins as compared to electron spin qubits. Here we measure the spin relaxation time T1 of a single hole in a GaAs gated lateral double quantum dot device. We propose a protocol converting the spin state into long-lived charge configurations by the SOI-assisted spin-flip tunneling between dots. By interrogating the system with a charge detector we extract the magnetic-field dependence of T1 ∝ B−5 for fields larger than B = 0.5 T, suggesting the phonon-assisted Dresselhaus SOI as the relaxation channel. This coupling limits the measured values of T1 from ~400 ns at B = 1.5 T up to ~60 μs at B = 0.5 T.