Publications Details

Publications / Conference

Shock tube investigation of quasi-steady drag in shock-particle interactions

Beresh, Steven J.; Kearney, S.P.; Pruett, Brian O.; Wright, Elton K.

A reassessment of historical drag coefficient data for spherical particles accelerated in shock-induced flows has motivated new shock tube experiments of particle response to the passage of a normal shock wave. Particle drag coefficients were measured by tracking the trajectories of 1-mm spheres in the flow induced by incident shocks at Mach numbers 1.68, 1.93, and 2.04. The necessary data accuracy is obtained by accounting for the shock tube wall boundary layer growth and avoiding interactions between multiple particles. Similar to past experiments, the current data clearly show that as the Mach number increases, the drag coefficient increases substantially. This increase significantly exceeds the drag predicted by incompressible standard drag models, but a recently developed compressible drag correlation returns values quite close to the current measurements. Recent theoretical work and low particle accelerations indicate that unsteadiness should not be expected to contribute to the drag increase over the relatively long time scales of the experiments. These observations suggest that elevated particle drag coefficients are a quasi-steady phenomenon attributed to increased compressibility rather than true flow unsteadiness. © 2012 American Institute of Physics.