Publications

Publications / Journal Article

Shock-ramp compression of tin near the melt line

Seagle, Christopher T.; Porwitzky, Andrew J.

Tin has been shock compressed to ∼69 GPa on the Hugoniot using Sandia's Z Accelerator. A shockless compression wave closely followed the shock wave to ramp compress the shocked tin and probe a high temperature quasi-isentrope near the melt line. A new hybrid backwards integration - Lagrangian analysis routine was applied to the velocity waveforms to obtain the Lagrangian sound velocity of the tin as a function of particle velocity. Surprisingly, an elastic wave was observed on initial compression from the shock state. The presence of the elastic wave indicates tin possess a small but finite strength at this shock pressure, strongly indicating a (mostly) solid state. High fidelity shock Hugoniot measurements on tin sound velocities in this stress range may be required to refine the shock melting stress for pure tin.