Publications

Publications / Journal Article

Shaker-structure interaction modeling and analysis for nonlinear force appropriation testing

Pacini, Benjamin R.; Kuether, Robert J.; Roettgen, Daniel R.

Nonlinear force appropriation is an extension of its linear counterpart where sinusoidal excitation is applied to a structure with a modal shaker and phase quadrature is achieved between the excitation and response. While a standard practice in modal testing, modal shaker excitation has the potential to alter the dynamics of the structure under test. Previous studies have been conducted to address several concerns, but this work specifically focuses on a shaker-structure interaction phenomenon which arises during the force appropriation testing of a nonlinear structure. Under pure-tone sinusoidal forcing, a nonlinear structure may respond not only at the fundamental harmonic but also potentially at sub- or superharmonics, or it can even produce aperiodic and chaotic motion in certain cases. Shaker-structure interaction occurs when the response physically pushes back against the shaker attachment, producing non-fundamental harmonic content in the force measured by the load cell, even for pure tone voltage input to the shaker. This work develops a model to replicate these physics and investigates their influence on the response of a nonlinear normal mode of the structure. Experimental evidence is first provided that demonstrates the generation of harmonic content in the measured load cell force during a force appropriation test. This interaction is replicated by developing an electromechanical model of a modal shaker attached to a nonlinear, three-mass dynamical system. Several simulated experiments are conducted both with and without the shaker model in order to identify which effects are specifically due to the presence of the shaker. The results of these simulations are then compared to the undamped nonlinear normal modes of the structure under test to evaluate the influence of shaker-structure interaction on the identified system's dynamics.