Publications

Publications / Journal Article

Sensitivity-informed bayesian inference for home plc network models with unknown parameters

Ching, David C.; Safta, Cosmin S.; Reichardt, Thomas A.

Bayesian inference is used to calibrate a bottom-up home PLC network model with unknown loads and wires at frequencies up to 30 MHz. A network topology with over 50 parameters is calibrated using global sensitivity analysis and transitional Markov Chain Monte Carlo (TMCMC). The sensitivity-informed Bayesian inference computes Sobol indices for each network parameter and applies TMCMC to calibrate the most sensitive parameters for a given network topology. A greedy random search with TMCMC is used to refine the discrete random variables of the network. This results in a model that can accurately compute the transfer function despite noisy training data and a high dimensional parameter space. The model is able to infer some parameters of the network used to produce the training data, and accurately computes the transfer function under extrapolative scenarios.