Publications
Seismic Source Modeling Software Enhancements (FY21)
Preston, Leiph A.; Poppeliers, Christian P.; Eliassi, Mehdi E.
Seismic source modeling allows researchers both to simulate how a source that induces seismic waves interacts with the Earth to produce observed seismograms and, inversely, to infer what the time histories, sizes, and force distributions were for a seismic source given observed seismograms. In this report, we discuss improvements made in FY21 to our software as applies to both the forward and inverse seismic source modeling problems. For the forward portion of the problem, we have added the ability to use full 3-D nonlinear simulations by implementing 3-D time varying boundary conditions within Sandia’s linear seismic code Parelasti. Secondly, on the inverse source modeling side, we have developed software that allows us to invert seismic gradiometer-derived observations in conjunction with standard translational motion seismic data to infer properties of the source that may improve characterization in certain circumstances. First, we describe the basic theory behind each software enhancement and then demonstrate the software in action with some simple examples.