Publications

Publications / Conference Paper

Scoping and concept design of a WEC for autonomous power

Korde, Umesh A.; Gish, L.A.; Bacelli, Giorgio B.; Coe, Ryan G.

This paper reports results from an ongoing investigation on potential ways to utilize small wave energy devices that can be transported in, and deployed from, torpedo tubes. The devices are designed to perform designated ocean measurement operations and thus need to convert enough energy to power onboard sensors, while storing any excess energy to support vehicle recharging operations. Examined in this paper is a traditional tubular oscillating water column device, and particular interest here is in designs that lead to optimization of power converted from shorter wind sea waves. A two step design procedure is investigated here, wherein a more approximate two-degree-of-freedom model is first used to identify relative dimensions (of device elements) that optimize power conversion from relative oscillations between the device elements. A more rigorous mathematical model based on the hydrodynamics of oscillating pressure distributions within solid oscillators is then used to provide the hydrodynamic coefficients, forces, and flow rates for the device. These results provide a quick but rigorous way to estimate the energy conversion performance of the device in various wave climates, while enabling more accurate design of the power takeoff and energy storage systems.