Publications

Publications / Conference

Scene kinetics mitigation using factor analysis with derivative factors

Scholand, Andrew J.; Larson, K.W.; Melgaard, David K.

Line of sight jitter in staring sensor data combined with scene information can obscure critical information for change analysis or target detection. Consequently before the data analysis, the jitter effects must be significantly reduced. Conventional principal component analysis (PCA) has been used to obtain basis vectors for background estimation; however PCA requires image frames that contain the jitter variation that is to be modeled. Since jitter is usually chaotic and asymmetric, a data set containing all the variation without the changes to be detected is typically not available. An alternative approach, Scene Kinetics Mitigation, first obtains an image of the scene. Then it computes derivatives of that image in the horizontal and vertical directions. The basis set for estimation of the background and the jitter consists of the image and its derivative factors. This approach has several advantages including: (1) only a small number of images are required to develop the model, (2) the model can estimate backgrounds with jitter different from the input training images, (3) the method is particularly effective for sub-pixel jitter, and (4) the model can be developed from images before the change detection process. In addition the scores from projecting the factors on the background provide estimates of the jitter magnitude and direction for registration of the images. In this paper we will present a discussion of the theoretical basis for this technique, provide examples of its application, and discuss its limitations.