Publications

Publications / Journal Article

Rethinking scaling laws in the high-cycle fatigue response of nanostructured and coarse-grained metals

Heckman, Nathan H.; Padilla, Henry A.; Michael, Joseph R.; Barr, Christopher M.; Clark, Blythe C.; Hattar, Khalid M.; Boyce, Brad B.

The high-cycle fatigue life of nanocrystalline and ultrafine-grained Ni-Fe was examined for five distinct grain sizes ranging from approximately 50–600 nm. The fatigue properties were strongly dependent on grain size, with the endurance limit changing by a factor of 4 over this narrow range of grain size. The dataset suggests a breakdown in fatigue improvement for the smallest grain sizes <100 nm, likely associated with a transition to grain coarsening as a dominant rate-limiting mechanism. The dataset also is used to explore fatigue prediction from monotonic tensile properties, suggesting that a characteristic flow strength is more meaningful than the widely-utilized ultimate tensile strength.