Publications
Response to comment on "grain boundary mediated plasticity in nanocrystalline nickel"
Our study (1) reported on the deformation response of nanocrystalline Ni during in situ dark-field transmission electron microscopy (DFTEM) straining experiments and showed what we view as direct and compelling evidence of grain boundary-mediated plasticity. Based on their analysis of the limited experimental data we presented, however, Chen and Yan (2) propose that the reported contrast changes more likely resulted from grain growth caused by electron irradiation and applied stress rather than from plastic deformation. Here, we give specific reasons why their assertions are incorrect and discuss how the measurement approaches they have used are inappropriate. Additionally, we present further evidence that supports our original conclusions. The method Chen and Yan employed to measure displacement merely probes the in-plane (two-dimensional) components of incremental strain occurring during the very short time interval shown [figure 3 in (1)] instead of the accumulated strain. As we noted explicitly in the supporting online material in (1), the loading was applied by pulsing the displacement manually. After each small displacement pulse, the monitored area always moved significantly within or even out of the field of view. Clear images could be obtained only when the sample position stabilized within the field of view, and at that time severe deformation was nearly complete. Thus, little incremental strain occurs during this short image sequence [figure 3 in (1)], as one might expect. We believe that the images shown in figure 3 of (1) are particularly valuable in understanding deformation in nanocrystalline materials. In general, the formation process of grain agglomerates simply occurred too fast to be recorded clearly. Moreover, instead of remaining constant after formation, the sizes of the grain agglomerates changed in a rather irregular manner in responding to the deformation and fracture process (see, for example, Fig. 1, B to D). This indicates that strong grain boundary-related activity occurred inside the grain agglomerates. Figure 3 in (1), a short (0.5 s) extract from more than 6 hours of videotaped experimentation (imaged ahead of cracks), not only reveals the formation process of a grain agglomerate, but also shows conclusive evidence for grain rotation and excludes the effect of overall sample rotation. It should be noted that other small grains still exhibit some minor contrast changes in figure 3 in (1). Hence, using them as reference points yields measurements that may not be accurate to {+-}1 nm [as Chen and Yan (2) claim in their analysis] and limits the accuracy of their conclusions. Chen and Yan also claim that no deformation has occurred, yet simultaneously state that the analysis has a deformation measurement error of 0.5%. This is simply not consistent; even small strains of this order may cause plastic deformation. In contrast with previous in situ TEM experiments (3-5), the special sample design adopted in our investigation (1) ensured that all deformation was primarily concentrated in a bandlike area ahead of the propagating crack. We found that these grain agglomerates were observed only in this bandlike thinning area as a response to the applied loads (Fig. 1B). No similar phenomena were detected under the electron beam alone or in stressed areas apart from the main deformation area, and these phenomena have not been reported during in situ observations of this same material made by other researchers (5). Subsequent cracks were always observed to follow this deformation area upon further displacement pulses (Fig. 1, C and D). This clearly indicates that the enlarged agglomerates do not result simply from electron irradiation plus stress, but rather from stress-induced deformation. In their comment, Chen and Yan claimed a linear relation between 'grain' area and time based on their measurements made from figure 3 in (1) and claimed that these measurements are exactly consistent with the classical grain growth equation. However, as we noted (1), the growth in size of this agglomerate is not isotropic and occurs in an irregular manner. For example, after bright contrast emerged from a grain about 6 nm in diameter, it remained well defined in size as a single, approximately equiaxed grain until t = 0.1 s (fig. S1). We have reproduced the 'grain growth' plot of Chen and Yan (Fig. 2) using our entire video image sequence (fig. S1). Clearly, the growth in area of the agglomerate is not consistent with linear grain growth. (Unfortunately, only a portion of these data could be included in the original paper for reasons of space.) Notably, Chen and Yan did not apply a similar 'grain growth' analysis to nearby grains; this would have yielded no information in support of their argument, as those grains show essentially no growth.